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stage.

The present study found that serum H,S level, H,S production rate, CSE mRNA and CSE protein levels
were increased in CVB3-induced myocarditis. p.-proparglygylcine (PAG), an irreversible CSE inhibitor,
decreased the infected myocardium titers on postinfection day 4, while NaHS, a H,S donor, alleviated
myocardial injury and necrosis, inflammatory cell infiltration and interstitial edema on postinfection
day 10. These data reveal that the CSE/H,S pathway is upregulated in the heart in a murine model of
CVB3-induced myocarditis and that inhibition of endogenous H,S is beneficial to treatment early in
the disease while administration of exogenous H,S is protective to infected myocardium during the later
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Myocarditis is a leading cause of morbidity and mortality, espe-
cially in children. One of the most common pathogens resulting in
viral myocarditis is coxsakievirus B3 (CVB3). To date, the therapeu-
tic strategy for this infection is primarily supportive, and practical
active therapy is still unavailable.

Meanwhile, hydrogen sulfide (H,S) has recently become the
third member of the gasotransmitter family, along with nitric
oxide (NO) and carbon monoxide (CO) [1]. The mechanism of
action for H,S involves the reaction with the disulfide groups or
metal ions in functional proteins [2] and the interaction with NO
to form nitrosothiol coupled with no cGMP accumulation, which
subsequently inhibits NO activity [3]. Previous studies have shown
that H,S plays key roles in a number of biological processes, includ-
ing vasorelaxation, inflammation, apoptosis, ischemia/reperfusion
and oxidative stress. For example, H,S was demonstrated to be a
vasodilator by opening Karp channels and hyperpolarizing mem-
brane potential of vascular SMCs [4]. Cystathionine y-lyase (CSE)
and cystathionine B-synthase (CBS) are the two major H,S-forming
enzymes [1]. The CSE/H,S pathway was reported to be predomi-
nant in myocardial tissue [5], which was further demonstrated
using a CSE gene knock-out approach [6]. Interactions between
gasotransmitters have been discussed extensively, including the
H,S downregulation of the nitric oxide synthase (NOS)/NO path-
way by inducing the expression of heme oxygenase-1(HO-1)/CO
[7]. Interestingly, the NOS/NO pathway has been shown to exert
a direct antiviral effect, in part, by damaging viral RNA in CVB3-
mediated myocarditis [8]. We have also previously reported that
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the HO-1/CO pathway was upregulated in CVB3-infected mice
and that ZnPPIX, a HO-1 inhibitor, not only inhibited HO-1 overex-
pression, but also temporarily induced HO-1 expression, which
protected the mice against myocardial injury during the early stage
of the disease [9]. Given these findings, we then wanted to deter-
mine whether the CSE/H,S pathway was involved in the pathogen-
esis of CVB3-related myocarditis.

Materials and methods

Materials. Experiments were carried out in a biosafety level 2
laboratory. All animal protocols were approved by the Animal Care
and Use Committee of Wenzhou Medical College. Animals were
purchased from the Shanghai Laboratory Animal Center (Shanghai,
China) and kept under pathogen-free conditions at the animal cen-
ter of Wenzhou Medical College. CVB3 Nancy strains were pur-
chased from the Shandong Academy of Medical Sciences
(Shandong, China). Hela cells were obtained from the Zhejiang Pro-
vincial Key Laboratory of Medical Genetics (Zhejiang, China).
RPMI1640 and fetal bovine serum (FBS) were purchased from GIB-
CO®. pL-proparglygylcine (PAG), NaHS and N,N-dimethyl-p-phenyl-
enediamine sulfate were purchased from Sigma (St. Louis, MO,
USA). L-cysteine and pyridoxal 5’-phosphate were purchased from
Solarbio (Beijing, China). TRIzol reagent was purchased from Invit-
rogen (Carlsbad, CA, USA). The RevertAid™ First Strand DNA Synthe-
sis Kit and PCR Master Mix were purchased from Fermentas
(Vilnius, Lithuania). The primers for CSE (S-5-CTGCCACCATTACG
ATTACCC-3'; A-5-TATCAGCACCCAGAGCCAAAG-3’) and B-actin (S-
5'-CCCATCTACGAGGGCTAT-3'; A-5'-TGTCACGCACGATTTCC-3')
were synthesized by Genecore (Shanghai, China). The polyclonal
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anti-CSE antibody was purchased from PTGLAB (Chicago, IL, USA).
The anti-tubulin antibody, HRP-labeled secondary antibody, SDS
Lysis Buffer, phenylmethanesulfonyl fluoride (PMSF), BCA protein
assay kit, PVDF membranes and BeyoECL Plus were all purchased
from Beyotime (Jiangshu, China).

Cell culture, virus propagation. Hela cells were grown in
RPMI1640 supplemented with 10% FBS. After reaching at least
90% confluence, CVB3 was added for 1 h, and the virus was then re-
leased from these cells by three freeze-thaw cycles. Samples were
centrifuged at 7500 rpm at 4 °C for 10 min, and the supernatant
was collected for further study.

Animal procedures. We randomly divided 115 six-week-old
inbred male Balb/C mice into four groups, which were designated
asN,C Pand S (n=25for N; n=30 for C, P and S). Group N is non-
infected mice, group C is infected control mice, and group P or S is
infected mice treatment with PAG or NaHS. The mice in group N
were inoculated intraperitoneally with phosphate-buffered saline
(PBS) daily. The other three groups served as the myocarditis mod-
els and received 107>%°TCIDso/ml of CVB3. From day 0, mice in
group P or S received daily intraperitoneal injections of PAG
(40 mg/kg/d) or NaHS (50 pmol/kg/d), respectively [10,11]. The
mice in group C received daily injections of PBS. These mice were
observed daily, and ten of the mice were randomly sacrificed on
days 4 and 10 by bleeding from retroorbital plexus under intraperi-
toneal administration of Chloral hydrate. Blood specimens and
hearts from the sacrificed mice were harvested for the following
assays.

Measurement of serum H,S. The basis and method of this assay
are published elsewhere [12]. Briefly, H,S interacts with zinc ace-
tate to form zinc sulfide, which dissolves in a hydrochloride acid
solution of N,N-dimethyl-p-phenylenediamine sulfate to yield, in
the presence of ferric chloride, methylene blue. This solution can
then be quantified by OD at a wavelength of 670 nm. In a 5 ml
reaction system, 0.1 ml of serum was mixed with 2.5 ml distilled
water, 0.5 ml zinc sulfide (1% w/v), 0.5 ml N,N-dimethyl-p-phenyl-
enediamine sulfate (20 mmol/l) in 7.2 M HCI, 0.4 ml ferric chloride
(30 mmol/l) in 1.2 M HCI and 1 ml trichloroacetic acid (10% w/v).
This mixture was centrifuged for 15 min, and the optical density
of the supernatant was determined. All samples were assayed
twice, and a standard curve was made with the NaHS solution in
order to calculate the H,S concentration. The results are listed as
pmol/L

Assay of endogenous H-S production in cardiac tissue. This assay
was performed as previously described [5]. In brief, Heart (about
20 mg) was removed, weighted and homogenized in 50 mmol/l
ice-cold potassium phosphate buffer (pH 6.8), and homogenates
were regulated to a concentration of 10% (w/v). The protein con-
centration of homogenates was determined by BCA protein assay
kit. All incubations were performed in 25 ml Erlenmeyer flasks
with center wells made of cryovial test tubes (2 ml). Tissue homog-
enates were added to a reaction mixture containing 100 mmol/l
potassium phosphate buffer (pH 7.4) and 10 mmol/l L-cysteine,
2 mmol/l pyridoxal 5'-phosphate. The center wells were filled with
1% zinc acetate and a 2.0 x 2.5 cm? piece filter paper to trap H,S.
Each flask was flushed with N, for 20 s to exclude O, and then
sealed. After incubation for 90 min in a 37 °C shaking water bath,
0.5 ml of 50% trichloroacetic acid was added to the flasks to dena-
ture the protein. The flasks were incubated again for another
60 min to ensure a full trap. The contents of the center wells were
then transferred to test tubes to detect H,S concentration, which
was calculated by the method mentioned above. The results are
displayed as nmol/min/g protein.

RT-PCR analysis. RNA was extracted from the tissues using TRI-
zol reagent. After denaturing at 94 °C for 3 min, PCR was run 30 cy-
cles (CSE) or 20 cycles (B-actin) of denaturation at 94 °C for 305,
annealing at 55 °C for 30s and elongation at 72 °C for 60 s, fol-

lowed by one cycle of final extension at 72 °C for 5 min. A negative
control without template cDNA was always included. The expected
sizes of the PCR products were 339 bp for CSE or 145 bp for s-actin,
and all PCR products were analyzed by 2% agarose gel electropho-
resis with ethidium bromide staining. The optical density of the
expected bands was measured, and the OD ratio of CSE mRNA to
p-actin mRNA was used to determine the relative amount of CSE
mRNA.

Western blot analysis. The hearts were homogenized on ice using
SDS Lysis Buffer with 1 mmol/l PMSF. A total of 50 pg of the protein
lysates were separated on SDS-PAGE at 120 V for 90 min and then
transferred onto PVDF membranes for 1 h at 200 mA. The mem-
branes were incubated overnight with the primary antibody (rab-
bit polyclonal anti-CSE antibody at a 1:100 dilution, mouse
monoclonal anti-tubulin antibody at a 1:1000 dilution), followed
by incubation with the secondary antibody (goat anti-rabbit/
mouse IgG antibody at a 1:1000 dilution) at room temperature
for 1 h. Finally, the bands were visualized by BeyoECL Plus.

Assay of viral titer and myocardial virus concentration. Viral quan-
tity was determined by 50% tissue culture infection dose (TCID50),
as published elsewhere [8]. The supernatants of heart homoge-
nates were serially diluted in PBS and planted onto Hela cell mon-
olayers in 96-well flat-bottomed microtiter plates in the presence
of RPMI1640 with 4% FBS and then incubated. The microtiter plates
were examined daily for 5 days for the appearance of any cyto-
pathic effect under an inverted microscope. The results were ex-
pressed as log;o TCID50/mg tissue. For the detection of virus
titer, the assay was performed as described above, using virus dilu-
tions instead of the tissue homogenate supernatants.

Histopathological study. Sections of the hearts were stained with
hematoxylin and eosin. The percent area of cellular infiltration and
myocardial necrosis was graded in a blinded manner and scored as
follows: 0, no lesion; 1+, lesions involving <25%; 2+, lesions involv-
ing 25% to 50%; 3+, lesions involving 50% to 75%; 4+, lesions
involving >75%.

Statistical analysis. Data were expressed as mean + SEM, and sta-
tistical analysis was performed with a one-way ANOVA followed
by a post hoc multiple comparisons test (LSD), when required.
The Kaplan-Meier method and log-rank test were used to analyze
survival. P <0.05 was considered to be statistically significant.

Results and discussion

H,S, which was formerly considered to be a colorless toxic gas
with a rotten-egg odor, was recently reported to be a new gaso-
transmitter with multiple biological functions, including the regu-
lation of cardiovascular homeostasis. Protective roles against
atherosclerosis and ischemic-reperfusion injury have been shown
for H,S [13,14]. To date, however, the role of the CSE/H,S pathway
in viral myocarditis has remained unclear.

Our data suggested that CVB3-mediated myocarditis resulted in
at least a twofold increase in serum H,S and the production rate of
H,S in the myocardium. Intraperitoneal administration of PAG,
which inhibits CSE activity by blocking substrates (such as cys-
teine) from binding the active site [15], reduced this effect
(Fig. 1A and B). Incubating the myocardium homogenates of in-
fected control with PAG (10 mmol/l [16]) showed an even more
dramatic reduction of the H,S production rate (Fig. 1C). The resid-
ual ability to produce small amounts of H,S in the heart might re-
sult from CBS, and the discrepancy of the two inhibitory methods
could be due to the metabolism of PAG in vivo. Furthermore, CSE
mRNA and CSE protein expression were also enhanced in CVB3-in-
fected mice compared to noninfected mice at both time points
(Fig. 2A and B). Therefore, it is reasonable to extrapolate that
CVB3 upregulates the CSE/H,S pathway in cardiac tissues, which
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Fig. 1. (A) CVB3-induced more than a twofold increase in serum H,S compared to basal levels. PAG or NaHS showed a significant decrease or increase compared to group C on
days 4 and 10. (B) CVB3-induced a similar increase in the production rate of H,S. Treatment with PAG for 4 and 10 days could reverse this effect, while treatment with NaHS
had no impact on the rate. (C) The production rate of H,S in infected myocardium by coincubation with PAG was more dramatic than the administration of PAG at two time
points. *P < 0.05 vs. group N, *P < 0.05 vs. group C, *P < 0.05 vs. the same treatment group on day 4, AP < 0.05 vs. group P.
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Fig. 2. (A) CVB3 increased CSE mRNA expression in group C compared to group N. (B) CVB3 increased CSE protein expression in group C compared to group N. *P < 0.05 vs.

group N.

causes the increased CSE expression and H,S production that is ob-
served in CVB3-induced myocarditis. This result raised questions
about the exact role, if any, that the upregulated pathway played
in the pathogenesis of viral myocarditis. One potential answer in-
volved the exogenous administration of H,S or the inhibition of
endogenous H,S.

Our data suggested that the myocardial viral titers of infected
mice were higher on postinfection day 4 than on postinfection
day 10 and that H,S influenced viral load in the early stage
(Fig. 3A). Using an endpoint titration assay, the administration of
NaHS resulted in enhanced myocardial viral load, while the down-

regulation of endogenous H,S inhibited viral replication (Fig. 3A).
On one hand, both two peaks of ERK1/2 activity and the activation
of the PI3K/Akt pathway increased viral progeny release and viral
protein expression in vitro [17,18]. On the other hand, H,S also
stimulated ERK1/2 and p38MAPK phosphorylation in RAW264.7
cells [7] and contributed to angiogenesis in the study of RF/6A
endothelial cells by facilitating PI3K/Akt activation [11]. H,S induc-
tion of the ERK1/2 and PI3K/Akt pathways is also related to its car-
dioprotective role against ischemia-reperfusion injury [14].
Whether H,S promotes CVB3 dissemination via ERK1/2 or PI3K/
AKt pathway merits further study. H,S facilitates NK cell death
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treatment group on day 4.

[19], which may also be related to its early pro-viral effects. Further
investigation into the exposure of supernatants of infected myo-
cardium homogenates to NaHS (50 pmol/l [11]), however, failed
to show a positive effect of H,S on viral propagation (Fig. 3B),
which suggested that H,S is a synergistic effector of viral dissemi-
nation and that downregulation of H,S alone is insufficient to pre-
vent the spread of the CVB3 virus.

Our data also suggested that, on postinfection day 10, H,S alle-
viated, while PAG exacerbated, CVB3-induced myocardial injury
and necrosis, the infiltration of inflammatory cells and interstitial
edema (Figs. 3C, D and 4). We speculated that H,S possessed anti-
inflammatory properties, which is consistent with the results of
recent studies indicating that H,S blocked NF-xB activation and
led to a reduction of ICAM-1, which is an important inflammatory
mediator [13,20], and that downregulation of the CSE/H,S path-
way facilitated leukocyte adherence and tissue swelling [21]. In
contrast, a series of studies reported that H,S had a pro-inflam-

matory role, including in a model of cecal ligation and punc-
ture-induced sepsis [12,22,23], in a model of lipopolysaccharide
(LPS)-induced endotoxemia [24] and in a model of caerulein-in-
duced pancreatitis and associated lung injury [25]. The different
results may be due to the animal model we studied was not
physically and chemically but biologically caused inflammation.
Another possible explanation of this discrepancy is that H,S
promotes lymphocyte death [19], which could contribute to its
anti-inflammatory role in CVB3-induced myocarditis, while also
preventing polymorphonuclear leukocyte apoptosis [26], which
could lead to a pro-inflammatory function in neutrophil-mediated
models. Overall, H,S seems to have a bidirectional role in regulat-
ing inflammation.

Another important mechanism of H,S cardioprotection may be
its regulation of oxidative stress. Our colleagues have previously
demonstrated that carvedilol protects against CVB3-induced myo-
carditis by decreasing malondialdehyde and increasing superoxide
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Fig. 4. Sections of infected hearts were stained with hematoxylin and eosin and
observed under 200x magnification. No myocardial injury was found in group N. A
mild accumulation of cellular infiltration in perivascular and interstitial regions was
present in infected heart on day 4. A notable cellular infiltration and necrosis was
seen in group C, which was more and less severe than group P or S, respectively, on
day 10.

dismutase, thereby reducing oxidative stress injury [27]. In fact,
considerable evidence suggests that H,S is a potent antioxidant.
Oxidative stress was attenuated by H,S in high glucose-induced
pancreatic beta-cells [28] and in methionine-induced brain endo-
thelial cells [29]. Within these cells, H,S acted as a scavenger for
oxygen-free radicals, such as hydrogen peroxide, superoxide an-
ions and peroxynitrite. In addition, H,S facilitated y-GCS/y-glutam-
ylcysteine (y-GC) expression and increased the levels of
glutathione, which is a major endogenous antioxidant [30]. Based
upon our data, the 10-day inhibition of CSE activity with PAG,
which leads to an underproduction of H,S, significantly exacer-
bates the myocardial damage caused by CVB3 infection. This fur-
ther supports the cardioprotective role of H,S. H,S can logically
be extrapolated to play an antioxidant role in counteracting
CVB3-induced myocarditis.

Both PAG and NaHS failed to improve the survival of the CVB3-
infected mice (Fig. 3E), which suggested that H,S exerted a pleio-
tropic effect and that a one-directional change of the pathway
was unable to completely ameliorate viral myocarditis. Given the
features of H,S, one promising therapeutic strategy could involve
the downregulation of the CSE/H,S pathway during the early
stages of CVB3 myocarditis and the upregulation of this pathway
during the late stage of the disease.

In conclusion, the present data reveal that the CSE/H,S path-
way is upregulated in the cardiac tissue of a CVB3 myocarditis
murine model. Inhibition of endogenous H,S is beneficial during
the early stage of this disease, while the administration of exog-
enous H,S protects the infected myocardium during the later
stage.
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