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The RhoA/Rho-kinase (ROCK) pathway is involved in angiotensin (Ang) II-induced cardiac hypertro-
phy. However, it is still unclear whether inhibition of farnesylpyrophosphate (FPP) synthase can
attenuate Ang II-induced hypertrophic responses, and whether it involves the RhoA/ROCK pathway.
The anti-hypertrophic effects of inhibition of FPP synthase with alendronate in Ang II-cultured
neonatal cardiomyocytes were partially reversed by geranylgeranyol (GGOH) and were mimicked
by GGTI-286, a geranylgeranyl transferase-I inhibitor, C3 exoenzyme, an inhibitor of Rho, or
Y-27632, an inhibitor of ROCK. Pull-down assay showed alendronate reduced-active RhoA by Ang
II was also partially antagonized by GGOH. This study revealed that the inhibition of FPP synthase
by alendronate reduces RhoA activation by diminishing geranylgeranylation which prevents Ang
II-induced hypertrophic responses in neonatal cardiomyocytes.

Cardiomyocytes
RhoA Structured summary:
Geranylgeranylation

MINT-7260047: Rhotekin-RBD (uniprotkb:Q9BST9) physically interacts (MI:0915) with Rhoa (uni-

protkb:P61589) by pull down (MI:0096)

© 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Cardiac hypertrophy is thought to be induced by humoral factors
such as angiotensin Il (Ang II) [1]. Ventricular hypertrophy is associ-
ated with increased cell size and changes in protein content and
gene expression, such as brain natriuretic peptide (BNP) [2,3]. Vari-
ous signal transduction pathways mediate the Ang Il-induced
hypertrophic response of cardiomyocytes [4-6]. RhoA/ROCK signal-
ing is thought to be activated in the Ang II-induced hypertrophic re-
sponse of cardiomyocytes, because recent studies have shown that
Ang Il activates RhoA in cardiomyocytes, and the inhibition of ROCK
or Rho suppresses Ang II-induced cardiomyocyte hypertrophy [6-9].

RhoA switches between an inactive guanosine diphosphate
(GDP)-bound and an active guanosine triphosphate (GTP)-bound
form [10]. RhoA must first be targeted by attachment of 20-carbon
geranylgeranyl groups to its C-terminal cysteine residues, known
as the geranylgeranylation of RhoA [11]. The enzyme that catalyzes
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RhoA geranylgeranylation is geranylgeranyl transferase-1[12]. Ger-
anylgeranylation of RhoA is critical for its membrane localization,
permitting its interaction with effector molecules such as ROCK,
to trigger diverse cellular functions [13].

Experiments have shown that alendronate inhibits farnesyl
pyrophosphate (FPP) synthase [14], a key enzyme in the mevalo-
nate pathway, through inhibition of isoprenylation including farn-
esylation and geranylgeranylation with consecutive decreases in
the formation of isoprenoid lipids such as FPP and geranylgeranyl
pyrophosphate (GGPP) [15]. The latter is essential for geranylger-
anylation and activation of RhoA [16-18].

In this study, we explored that inhibition of FPP synthase by
alendronate could interfere with the hypertrophic response in-
duced by Ang Il in cultured neonatal ventricular myocytes, and fur-
ther demonstrated that inhibition of FPP synthase in neonatal
cardiomyocytes is, at least in part, via the RhoA/ROCK pathway.

2. Materials and methods
2.1. Materials

Alendronate sodium, angiotensin II, collagenase I, and gera-
nylgeranyol (GGOH) were from Sigma (Sigma-Aldrich Co., USA).
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GGTI-286 was from Calbiochem (San Diego, CA, USA). Y-27632 and
C3 exoenzyme were from Alexis (San Diego, USA). All other re-
agents used in the experiment were of analytical grade.

2.2. Animals

Male, 1-2 day-old Wistar rats were obtained from the Experi-
mental Animal Center, Chinese Academy of Sciences (Shanghai,
China). The investigation conformed to the Guide for the Care
and Use of Laboratory Animals published by the US National Insti-
tutes of Health (NIH Publication No. 85-23, revised 1996), and was
approved by the Institutional Animal Care and Use Committee of
Zhejiang University.

2.3. Cell culture
Neonatal cardiomyocytes were prepared from the ventricles of

1- to 2-day-old Wistar rats as previously described [19] with some
modification. Minced ventricular myocardium was dissociated by
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0.125% trypsin (Gibco, USA) and 0.05% collagen-I (Sigma-Aldrich)
mixture digestion in D-Hanks salt solution (Gibco). The cell sus-
pension was centrifuged at 900 rpm for 6 min and the dissociated
cells were enriched in cardiomyocytes by differential adhesion for
60 min and plated at 5 x 10° to 1 x 10° cells/ml. The cardiomyo-
cytes were incubated at 37 °C in a humidified atmosphere with
5% CO,. Bromodeoxyuridine (0.1 mM) (Amersco, USA) was added
to the medium to inhibit proliferation of non-myocytes. This pro-
cedure yielded cultures with 90-95% myocytes, as assessed by
microscopic observation of cellular contractions. The cardiomyo-
cytes were cultured for 48 h and then in serum-free medium
(SFM) for 24 h before initiating the study, when the cells were trea-
ted with various agents for the indicated times.

2.4. Measurement of cell surface area
To determine cell surface area, cardiomyocyte images captured

by a Cannon camera under an Olympus inverted microscope (Ja-
pan) were measured by the method of Simpson and Savion [20]
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Fig. 1. Effects of alendronate on Ang Il-induced hypertrophic response of cardiomyocytes. Myocytes were pre-incubated with alendronate (ALN) (3, 10, or 30 uM) for 30 min
and then incubated with or without Ang I (1 uM) for 48 h. Effects of alendronate on (A) cell surface area; (B) protein content; (C) BNP mRNA expression; (D) Ang II-stimulated
cell surface area; (E) Ang II-stimulated protein content; (F) Ang II-stimulated BNP mRNA expression. ALN: alendronate. Assays for BNP mRNA expression and protein content,
n =4 wells each time, and each experiment was carried out in triplicate. *P < 0.05 and *#P < 0.01 vs control group; *P < 0.05 and **P < 0.01 vs Ang II group.



Y. Ye et al./FEBS Letters 583 (2009) 2997-3003 2999

using NIH Image ] software. All cells from randomly selected fields
in 2 or 3 wells were examined for each condition. We measured
100 cells in each condition. The cell surface area in control cells
was normalized to 100% and all of the results were expressed as
the percentage of control values. This process was replicated in
three independent experiments.

2.5. Measurement of protein content

Cultured myocytes were treated with various agents for the
indicated times. After washing with phosphate buffered saline,
the cells were treated with 10% trichloroacetic acid (Sigma-
Aldrich) as described by Yamamoto et al. [21]. Thereafter, the
precipitates were dissolved in 0.15 N NaOH. The protein content
was measured using a BCA protein assay (Beyotime, China).

2.6. Quantitative real-time polymerase chain reaction

Total RNA extraction and RT-PCR were performed as previously
described [22]. After 48 h of incubation with various agents, the
cultured cardiac myocytes were submitted to RNA extraction. Total
RNA was isolated from cultured cells with Trizol reagent (Invitro-
gen, USA) according to the manufacturer’s instructions. Real-time
quantitative RT-PCR was performed on an ABI PRISM 7000 se-
quence detection system (Applied Biosystems, Foster City, CA) with
SYBR Green PCR master mix (Applied Biosystems) in a total volume
of 25 pl. The relative amount of BNP mRNA expression was nor-
malized using the housekeeping gene, glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) mRNA, as internal control. The
primer sequences for each gene (Sangon, Shanghai, China) were:
BNP forward, 5'CTGTGACGGGCTGAGGTTGT3’; reverse, 5 TGGCAAG-
TTTGTGCT GGAAG3'; and GAPDH forward, 5’AAGAAGGTGGTG-
AAGCAGGC3’; reverse, 5TCCACCACCCTGT TGCTGTA3'. Data were
analyzed with Sequence Detection System software (Applied Bio-
systems). Each run was completed with melting curve analysis to
confirm the specificity of amplification. In addition, products were
controlled with gel electrophoresis. Quantification was performed
using the standard curve method [23]. In brief, standard curves
using six points with serial dilution of the known starting copy
number of the appropriate cDNA, leading to a high linear relation-
ship [Correlation coefficient (1) > 0.99)] between the threshold cycle
(CT) and the logarithm of the cDNA concentration for both BNP and
GAPDH genes. The amount of target and control genes was quanti-
fied by measuring CT and determined from the appropriate stan-
dard curve. The relative amount of BNP mRNA expression was
normalized by GAPDH mRNA to obtain a normalized target value.
Each of the experimental normalized sample values was divided
by one normalized control sample value (calibrator) to generate
the relative expression level.

2.7. RhoA activity assay

Pull-down assay to measure RhoA activity was performed using
a Rho activation assay kit, according to the manufacturer’s protocol
(Cytoskeleton, Denver, CO, USA). Sub-confluent cardiac myocytes
were incubated in SFM for 24 h before addition of 30 uM alendro-
nate with or without comparable GGOH for a further 48 h. Cells
were then stimulated with 1 pM Ang II for 15 min at 37 °C before
addition of lysis buffer as described by Aoki et al. [6]. A protein as-
say was performed prior to the pull-down assay to equalize total
protein concentration in each treatment group. Meanwhile, GAP-
DH protein was used as the internal control. Whole cell lysates
were incubated with agarose-conjugated rhotekin-RBD for
60 min at 4 °C and then washed once with wash buffer. Agarose
beads were boiled in SDS-PAGE sample buffer to release active
Rho prior to undergoing precipitation with the Rhotekin GTP-Rho

binding domain (Cytoskeleton). After precipitation, samples were
processed for Western blotting with a specific anti-RhoA antibody
(Cytoskeleton). Meanwhile, 20 pig total cell lysate per sample was
used to detect total RhoA.
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Fig. 2. Influence of GGOH on anti-hypertrophic action of alendronate. Myocytes
were pre-incubated with 30 uM ALN alone or in combination with equal GGOH for
30 min and then were stimulated combined with Ang II (1 uM) for 48 h. (A) Cell
area surface; (B) protein content; (C) BNP mRNA expression. ALN: alendronate.
Assays for BNP mRNA expression and protein content, n =4 wells each time, and
each experiment was carried out in triplicate. *P<0.05 and *#P<0.01 vs control
group; *P<0.05 and **P<0.01 vs Ang II group; »P<0.05 and = »P<0.01 vs Ang
I+ ALN group.
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2.8. Statistical analysis

Results are expressed as means + standard error of the mean
(S.E.M.) of at least three separate experiments. Statistical signifi-
cance was determined using one-way ANOVA followed by a post
hoc test. The differences were considered statistically significant
at a value of P < 0.05.
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Fig. 3. Effects of Rho/ROCK inhibitors on Ang II-induced cardiomyocyte hypertro-
phy. Myocytes were pre-incubated with Y-27362 (at 10 uM), GGTI-286 (at 10 uM),
C3 exoenzyme (at 30 ng/mL), or ALN (at 30 uM) for 30 min and then stimulated
combined with Ang II (1 uM) for 48 h. (A) Cell area surface; (B) protein content; (C)
BNP mRNA expression. ALN: alendronate. Assays for BNP mRNA expression and
protein content, n=4 wells each time and each experiment was carried out in
triplicate. *P < 0.05 and *#P < 0.01 vs control group; *P < 0.05 and **P < 0.01 vs Ang II
group.

3. Results

3.1. Prevention of cardiomyocyte hypertrophy by inhibition of FPP
synthase

Alendronate alone did not affect cell surface area, protein con-
tent, or BNP mRNA expression in cultured cardiomyocytes
(Fig. 1A-C). However, pretreatment with alendronate significantly
attenuated cell surface area, protein content, and BNP mRNA
expression in neonatal cardiomyocytes stimulated with Ang II in
a dose-dependent manner (Fig. 1D-F).

3.2. Regulation of the anti-hypertrophic effect of alendronate by
geranylgeranylated protein

In order to explore whether the reversal of cardiomyocyte
hypertrophy by alendronate is associated with the geranylgerany-
lated protein, we treated cardiomyocytes with alendronate along
with GGOH (Sigma-Aldrich Co., USA). The results showed that
the effects of alendronate on cell surface area (106.84 +1.83 vs
156.80+4.91%, P<0.01), protein content (16.33+1.34 vs
20.66 + 1.08 pg/well, P <0.05), and BNP mRNA expression
(85.65+16.07 vs 148.50 £ 11.62%, P <0.05) were prevented by
GGOH treatment (Fig. 2A-C).

3.3. Effects of Rho/ROCK inhibitors on Ang Il-induced hypertrophic
response in cardiomyocytes

Because GGOH partially reversed the inhibitory effects of
alendronate on Ang Il-induced hypertrophy, and RhoA is a geranyl-
geranylated protein [24], we sought to investigate the influence of
Rho/ROCK inhibition. We found that GGTI-286 (10 M), a specific
inhibitor of geranylgeranyl transferase-I [25], which regulates the
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Fig. 4. RhoA expression and activation. Serum-starved cells in the absence or
presence of 10 uM GGTI-286 or 30 uM alendronate were combined with or without
GGOH before incubation with Ang II for 15 min. Bound RhoA proteins were detected
by Western blot using polyclonal antibody against RhoA (upper panel). Western
blotting of the total amount of RhoA in cell lysates (middle panel) was also
performed in the same lysates. GAPDH protein was the endogenous control for each
sample (lower panel). ALN: alendronate. Values shown are representative of four
independent experiments. #**P < 0.01 vs control group; *P<0.05 and **P<0.01 vs
Ang Il group; » =P <0.01 vs Ang Il + ALN group.
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geranylgeranylation of Rho, mimicked the inhibitory effect of
alendronate on cell surface area, protein content, and BNP mRNA
expression (Fig. 3). Furthermore, C3 exoenzyme (30 ng/ml), a spe-
cific inhibitor of Rho [26], significantly inhibited increases of cell
surface area, protein content, and BNP mRNA expression in the
group treated with Ang II (Fig. 3). Similarly, Y-27632 (10 uM), a
ROCK inhibitor [27], inhibited Ang II-induced hypertrophy as as-
sessed by cell surface area, protein content, and BNP mRNA expres-
sion (Fig. 3).

3.4. Effect of alendronate on RhoA activation

Since inhibition of Rho geranylgeranylation is the most likely
mechanism to explain the anti-hypertrophic effects of alendronate
on cardiomyocytes, we investigated the effect of alendronate on
RhoA activation. We used a pull-down assay with the fusion pro-
tein GST-RBD, which specifically recognizes Rho-GTP, the active
form of Rho. An increase in Rho-GTP occurred in cardiomyocytes
treated with Ang II for 15 min. The active form of Rho (GTP-bound)
was elevated to 165.20 + 15.53% of control after the addition of Ang
Il (Fig. 4). Pretreatment with 30 uM alendronate markedly reduced
RhoA activation to 85.20 +4.81% (P < 0.01). However, in the pres-
ence of 30 uM GGOH, the inhibitory effect of alendronate against
the activation of Rho by Ang II was markedly reversed to
139.60 + 10.76%, but was still significantly lower than the Ang II
group (Fig. 4).These results suggest that Rho activation is partially
attenuated by alendronate via the inhibition of geranylgeranyla-
tion. Furthermore, the inactivation was mimicked by GGTI-286
(10 uM) (Fig. 4), which confirms that alendronate inhibits the

Acetyl-CoA

Mevalonate

v
GGOH
FPP synthase ———» \ l

v
FPP ’

GGPP

hypertrophic response inhibition  of = Rho

geranylgeranylation.

through

4. Discussion

The results of the present study demonstrated inhibition of FPP
synthase by alendronate, which protected against Ang II-mediated
hypertrophic responses as measured by increases of cell surface
area, protein content, and BNP mRNA expression in neonatal
cardiomyocytes. The underlying mechanism involved inhibition
of GGPP and RhoA signaling. Previous studies have shown that
the primary mechanism of action of the FPP synthase inhibitor
alendronate is due to the reduction of isoprenoid intermediates
such as GGPP [14,15,28,29], that is essential for the post-transla-
tional geranylgeranylation of small Rho GTPase signaling proteins,
including RhoA (Fig. 5). GGOH is metabolized to GGPP in cells [30].
In our study, incubation with GGOH partially reversed the alendr-
onate-induced inhibition of the cardiac hypertrophic response
evoked by Ang II, suggesting that the anti-hypertrophic effect of
alendronate on Ang II activated cardiac hypertrophy may be asso-
ciated, at least in part, with the suppression of GGPP, and thus
might be via limitation of RhoA geranylgeranylation.

In cancer cells and endothelial cells, alendronate exerts its effect
by inhibiting FPP synthase by inhibiting RhoA geranylgeranylation
and activity [31,32]. However, little is known about whether FPP
synthase inhibition modulates the RhoA signaling pathway in neo-
natal cardiomyocytes.

Ang Il evokes a variety of hypertrophic responses such as
enlarged cell size [2,20], changes in gene expression [2,3], and

Ang I1

GGTI-286

GG Tase-I

RhoA
Y

Geranylgeranylated proteins

(Active Rho A)

}

Rho-kinase Y-27632
hypertrophy

Fig. 5. Schematic representation of the anti-hypertrophic response of alendronate via regulation of isoprenoid products and RhoA/ROCK activation in neonatal

cardiomyocytes. Cell-permeable geranylgeranyol (GGOH) is converted to GGPP in cells.
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increases of protein content [21] in cardiomyocytes. Notably, evi-
dence indicates that the activated RhoA/ROCK pathway contributes
to Ang Il-induced cardiac hypertrophy [6-9], though various path-
ways contribute to the Ang Il mediation mechanism.

SGGPP activates RhoA via geranylgeranylation [13]. The active
GTP-bound form of RhoA elicits downstream signaling such as
ROCK which influences cytoskeleton organization and gene tran-
scription [13,33]. We found a higher level of GTP-bound active
RhoA but a similar level of total RhoA in cardiomyocytes in response
to Ang II, which is consistent with several other investigations [6,8].
Furthermore, administration of alendronate decreased the level of
active RhoA but had no effect on total RhoA expression. Thus, our
results showed that the FDS inhibitor alendronate only affects the
activated form of RhoA. In addition, we demonstrated that the
alendronate-induced decrease in the activated form of RhoA, was
reversed by GGOH, as was cardiac hypertrophy, suggesting that
the inhibition of FPP synthase reduced the activation of RhoA in
cardiomyocytes via depletion of GGPP and consequent suppression
of RhoA geranylgeranylation. Studies have demonstrated that inhi-
bition of RhoA by C3 exoenzyme attenuates hypertrophic response
of cardiomyocytes induced by Ang I, as indicated by expression of
specific genes including atrial natriuretic factor (ANF) [6] and pro-
tein synthesis [9]. This was further confirmed by our in vitro study
as shown by decreases in cell surface area, protein content, and BNP
mRNA expression (Fig. 3). Furthermore, GGTI-286, the specific
inhibitor of geranylgeranylation [12], which attenuated the Ang
[I-induced RhoA activity (Fig. 4), was also found to inhibit cardiac
hypertrophy induced by Ang II (Fig. 3).This is supported by the re-
port of Laufs et al. [34] demonstrating that inhibition of geranylger-
anyl transferase by GGTI-286 (50 uM) prevented the molecular
characteristics of the hypertrophic phenotype ANF expression in-
duced by Ang II. In addition, in our study, inhibition of ROCK, the
downstream effector of RhoA, by Y27632 attenuated Ang II-induced
cardiomyocyte hypertrophy, consistent with an in vitro report by
Morikawa-Futamatsu et al. [8] and in vivo studies showing that
long-term inhibition of ROCK suppresses Ang Il-induced cardiovas-
cular hypertrophy in rats [7], as well as in apolipoprotein E-defi-
cient mice [35]. All these results further support the notion that
inhibition of RhoA activation and RhoA geranylgeranylation is of
importance for the protection by alendronate against Ang II-in-
duced hypertrophic responses in neonatal cardiomyocytes.

In conclusion, administration of the GGPP substrate GGOH par-
tially abolishes the protection against Ang Il-mediated cardiac
hypertrophic responses, and the reduction of Ang II-evoked RhoA
activity in vitro, induced by alendronate. This suggests that lower-
ing GGPP formation and subsequent inactivation of RhoA/ROCK
signaling may be the primary mechanism underlying the inhibition
of FPP synthase by alendronate in neonatal cardiomyocytes, and a
link between the FPP synthase and Ang II-mediated RhoA/ROCK
signaling in cardiac hypertrophy was demonstrated.
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