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a b s t r a c t

Ghrelin, a 28-amino-acid peptide, is mainly secreted by the stomach. Evidence has shown ghrelin to have
neuroprotective effects. However, whether ghrelin protects hippocampal neurons against cell death in
pilocarpine-induced seizures is unknown. We used Nissl staining to show that ghrelin attenuated the
neuronal loss caused by pilocarpine-induced seizures in the hippocampus. Ghrelin exerted the protective
eywords:
hrelin
euronal death
europrotective effect
eizure
ippocampus

action through regulating the phosphatidylinositol-3-kinase and Akt pathway. Moreover, ghrelin treat-
ment reversed the decreased ratio of Bcl-2 to Bax induced by seizures while inhibiting the activated
caspase-3. Ghrelin can inhibit hippocampal neuronal damage caused by pilocarpine-induced seizures,
which might have therapeutic value in seizures.

© 2009 Elsevier Ireland Ltd. All rights reserved.
ilocarpine

hrelin, a 28-amino-acid peptide secreted mainly by the stomach is
he endogenous ligand of growth hormone secretagogue receptor
ype 1� (GHSR-1�) [13]. GHSR-1� is a G protein-coupled receptor.
HSR-1� is expressed in peripheral tissues and extensively in the
entral nervous system, such as the pituitary gland, hypothalamus,
halamus, cortex and hippocampus [7,10]. Ghrelin is secreted to reg-
late the release of growth hormone and promote adiposity and
ppetite [16,20,23]. Moreover, ghrelin could inhibit the neuronal
amage induced by glucose–oxygen deprivation in hypothalamus
nd protect neurons in the hippocampus and cortex against cerebral
schemia/reperfusion [3,14,15]. The phosphatidylinositol-3-kinase
PI3K)/Akt signaling pathway plays a central role in intracellular
rocesses such as cell survival and proliferation. Cumulative data
howed that the anti-apoptotic effects of ghrelin might be related
o activation of not only the PI3K/Akt signaling pathway, but also
he mitochondrial pathway [15,24]. Recently, serum ghrelin level
as found to be up-regulated in the epileptic patients [2]. Ghrelin
lso suppressed the onset time of seizures induced by pentylenete-
razole and inhibited oxidative stress in the brain of rats [18,19].

These results implied that ghrelin had neuroprotective effects.
owever, whether ghrelin exerts biological effects on hippocampal
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neuronal injury in pilocarpine-induced seizures is unknown. In this
study, we detected the protective effects of ghrelin in pilocarpine-
induced seizures and the possible underlying mechanisms such as
the PI3K/Akt signaling pathway and mitochondrial apoptosis path-
way.

The study was performed in accordance with international
guidelines and approved by the Chinese Institutional Animal
Care Committee. Adult male Wistar rats (Experimental Animal
Center of Shandong University) weighing 200–250 g were given
lithium chloride intraperitoneally (3 mEq/kg, i.p.). Twenty hours
after lithium chloride treatment, experimental rats received pilo-
carpine (30 mg/kg, i.p. Sigma, St. Louis, MO, USA) and control
animals received normal saline at the same volume. Scopolamine
methylnitrate (1 mg/kg) was injected subcutaneously 30 min
before pilocarpine administration to prevent peripheral cholinergic
effects. The rats showing stage 4 or 5 convulsive seizures according
to Racine [21] were included in the experimental groups. Seizures
were allowed to last for 60 min and then were terminated by admin-
istration of diazepam (10 mg/kg, i.p.). Rats were decapitated at 2, 8,
16, 24 and 72 h after seizures.

In order to verify the neuroprotective effects of ghrelin on
pilocarpine-induced seizures, rats were randomly divided into

4 groups for treatment: control, pilocarpine, pilocarpine + saline
and ghrelin. Rats in control group and pilocarpine group were
treated as what have mentioned above. In ghrelin group, ghre-
lin (Anaspec, San Jose, CA, USA) dissolved in normal saline was
injected intraperitoneally at 80 �g/kg 30 min before pilocarpine

http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:chizhaofu0618@126.com
dx.doi.org/10.1016/j.neulet.2009.01.067
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Table 1
Effects of ghrelin against neuronal loss in hippocampus after seizures.

Group Neuron number (mean ± SD)

CA1 CA3

Control 241.5 ± 24.5 265.5 ± 24.3
Pilocarpine 105.8 ± 10.8* 116.5 ± 12.9*

Pilocarpine + ghrelin 201.3 ± 17.7# 217.5 ± 20.0#

The number of surviving pyramidal cells per 1 mm length of the CA1 and CA3 sub-
fields of the hippocampus was counted under light microscopy. Data were mean ± SD

F
(
(
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reatment and saline at the same volume in the pilocarpine + saline
roup.

Rats under anesthesia were intracardially perfused with 4%
araformaldehyde in 0.1 M phosphate buffered saline and the
rains were removed. The trimmed brains were fixed with paraf-
n, cut into coronal sections 10 �m thickness and underwent Nissl
taining with toluidine blue. For every tenth section (six sections
er animal), we counted in a blinded manner the number of surviv-

ng hippocampal CA1 and CA3 pyramidal cells per 1-mm length of
he bilateral hemispheres by use of a microscope with high magnifi-
ation (×400). The detailed procedure was carried out as previously
escribed [11].

Total RNA was extracted from hippocampi by use of TRI-
ol reagent (Invitrogen, Carlsbad, CA, USA). Oligo (DT)-primed
DNA was prepared with use of M-MLV reverse transcriptase
Fermentas, Glen Burnie, MD, USA). LightCycler 2.0 (Roche,

annheim, Germany) was used for detecting the real-time PCR
roducts. The primers for GHSR-1� were forward, 5′-CAGCG-
CTTCTTCTTTCTACCG-3′; and reverse, 5′-CACCACCACAGCAA-
CATCT-3′. PCR involved 45 cycles at 95 ◦C for 10 s, 5 s at 58 ◦C and
5 s at 72 ◦C. The expression of the target gene was normalized to
hat of �-actin.

Hippocampi were homogenized in 10 volumes of ice-cold
omogenization buffer and centrifuged at 15,000 rpm for 10 min
t 4 ◦C. Supernatants were collected and the protein concentra-
ions were measured with use of a BCA protein assay kit (Beyotime,
iangsu, China). Thirty micrograms of protein were size-separated
y SDS-PAGE and then transferred to nitrocellulose membranes.
he membranes were incubated with the primary antibodies anti-
HSR-1� (1:200), anti-Bax (1:200), and anti-Bcl-2 (1:500; all Santa
ruz Biotechnology, Santa Cruz, CA, USA), anti-phospho (Tyr458)
85 PI3K (1:250), anti-PI3K p85 (1:250), anti-Akt (1:1000) and
nti-phospho-Akt (Ser-473) (1:250; all Cell Signal Technology, Bev-
rly, MA, USA), and anti-caspase-3 (1:200, Chemicon, Temecula,
A, USA) at 4 ◦C overnight. Then the membranes were incu-
ated with horseradish peroxidase-conjugated secondary antibody

1:10,000; Jingmei, Beijing, China) for 1 h at 37 ◦C. Immunore-
ctivity was detected by an enhanced chemiluminescence kit
Millipore, Billerica, MA, USA), then the images underwent anal-
sis by use of an image analyzer (Alpha Innotech, San Leandro, CA,
SA).

ig. 1. Nissl staining with toluidine blue of the hippocampal CA3 (Panels A–C) and CA1 (
400×). (A and D) Control group, showing normal pyramidal neurons. (B and E) Pilocarpi
C and F) Pilo + ghrelin group, showing the effect of ghrelin on neuronal loss. Bar = 50 �m,
(n = 4/group).
* p < 0.05 vs. control.
# p < 0.05 vs. pilocarpine.

Data were expressed as mean ± standard deviation (SD). One-
way ANOVA and the Newman–Keuls test were used for statistical
analysis of the result as appropriate. Significance level was set at
p < 0.05.

Nissl staining to examine the neuronal loss in hippocampal CA1
and CA3 regions after pilocarpine-induced seizures revealed that
seizures led to severe cell death at 72 h after seizures. The num-
ber of surviving neurons was decreased significantly as compared
with control (p < 0.05), moreover, ghrelin treatment significantly
attenuated the neuronal loss induced by seizures (p < 0.05) (Fig. 1;
Table 1), with no significant difference in neuronal loss between the
pilocarpine and pilocarpine + saline groups (data not shown).

GHSR-1� mRNA and protein levels showed no significant
changes at 24 h after seizures as compared with control and ghrelin
treatment had no effect on the expression (p > 0.05) (Fig. 2).

Immunoreactivity of phospho-PI3K p85 (Tyr458) and phospho-
Akt (Ser473) was significantly higher at 2 and 8 h after seizures
(p < 0.05), and lower 8 h later than that in control (p < 0.05) (Fig. 3A
and C). After ghrelin administration, the decrease in phospho-PI3K
p85 and phospho-Akt levels induced by seizures was reversed
significantly (p < 0.05) (Fig. 3B and D), with no effect by saline treat-
ment (data not shown). Levels of both total PI3K p85 and Akt did
not significantly differ (data not shown).
Immunoreactivity of Bcl-2 in the hippocampus was decreased
at 2 h and continued to decrease up to 72 h after seizures (p < 0.05).
In contrast, Bax showed a significantly higher expression in pilo-
carpine groups than in control (p < 0.05). Moreover, the active

Panels D–F) pyramidal neurons at 72 h after seizures was shown with high power
ne (pilo) group, showing neuronal death (shrunken neurons with pyknotic nuclei).
n = 4/group.
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Fig. 2. The expression of GHSR-1� in the rat hippocampus after seizures and the effect of ghrelin. (A) Relative expression of GHSR-1� mRNA to �-actin in the hippocampus
of the rats. (B and C) Immunoblot analysis and relative density of GHSR-1� protein. Data were mean ± SD (n = 4/group). Pilo = pilocarpine.
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ig. 3. The protein levels of phospho-PI3K p85 (Tyr458) and phospho-Akt (Ser473). (
t various time points after seizures. (B and D) Effect of ghrelin on seizure-induced in
ata were mean ± SD (n = 4/group). *p < 0.05 vs. control and #p < 0.05 vs. pilo. Pilo = p

leavage product of caspase-3 appeared at 24 h after seizures, and
ncreased persistently until 72 h (p < 0.05) (Fig. 4A and C). Ghrelin
retreatment reversed the decreased Bcl-2 level and the increased
ax level at 24 h after pilocarpine treatment (p < 0.05). Ghrelin
lso sharply reduced the increased caspase-3 activity induced by
eizures (p < 0.05) (Fig. 4B and D) with no effect by saline (data not
hown).

In this study, we showed that pilocarpine-induced seizures
aused prominent neuronal loss in the hippocampus and ghre-
in could significantly rescue neurons from death induced by
eizures.
Ghrelin reversed the down-regulated levels of GHSR-1� mRNA
nd protein in the rat cerebral cortex on ischemia/reperfusion
njury [15]. The expression of GHSR-1� mRNA in the hypothalamus
as also up-regulated with intraventricular injection of ghrelin in

ats [17]. However, our data showed that both pilocarpine treat-

ig. 4. The levels of Bcl-2, Bax and activated fragment of caspase-3. (A and C) Immunoblot
ats. (B and D) Effect of ghrelin on the levels of Bcl-2, Bax and activated caspase-3. Relativ
n = 4/group). *p < 0.05 vs. control and #p < 0.05 vs. pilo. Pilo = piloarpine.
C) Immunoblot analysis and relative density of phospho-PI3K p85 and phospho-Akt
n of phospho-PI3K p85 and phospho-Akt. �-Actin was used as an internal standard.

rpine.

ment and ghrelin preconditioning did not regulate the expression
of GHSR-1� in the rat hippocampus, which suggested that ghrelin
might not up-regulate GHSR-1� in the hippocampus directly.

We extended the investigation to gain insight into the signal-
ing pathway and apoptosis-related proteins modulated by ghrelin.
PI3K, composed of an 85-kDa regulatory subunit and a 110 kDa cat-
alytic subunit, played a critical role in preventing apoptosis, and
tyrosine phosphorylation of p85 was critical for the activation of
PI3K [5,8]. Akt, a downstream effector of PI3K, was a critical medi-
ator of neuronal survival in pathological neuronal cell death [9].
In agreement with the previous study reporting that ghrelin acti-

vated the PI3K/Akt pathway in hypothalamic neuronal cells [3],
we showed that ghrelin strongly up-regulated the seizure-induced
decreased levels of phospho-PI3K p85 and phospho-Akt in the hip-
pocampus, which was believed to be an important mechanism to
eliminate neuronal damage in hippocampus.

analysis and relative density of Bcl-2, Bax and caspase-3 in the hippocampus of the
e density was the ratio of the target band to �-actin band. Values were mean ± SD
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Recent study indicated that the activation of the PI3K/Akt path-
ay led to increased expression of Bcl-2 [1], so we examined the

ffects of ghrelin on the mitochondrial apoptosis pathway to con-
rm our points. Pilocarpine-induced seizures resulted in increased
ax and decreased Bcl-2 levels. With an increased ratio of Bcl-2 to
ax, the release of cytochrome c from mitochondria was suppressed
nd the activation of caspase-3 was prevented [12]. Caspase-3 in the
ippocampus began to be activated at 24 h after pilocarpine treat-
ent, whereas ghrelin pretreatment increased the decreased ratio

f Bcl-2 to Bax induced by seizures and inhibited caspase-3 activa-
ion. Similar mechanisms of ghrelin protecting the neurons in the
ortex against ischemia/reperfusion were observed [15]. The cur-
ent data suggested that the mitochondrial pathway participated
n the protective effect of ghrelin against pilocarpine-evoked pro-
onged seizures.

We verified the neuroprotective effects of exogenous ghrelin on
ilocarpine-induced seizures in that GHSR-1� mRNA and protein

evels in the hippocampus were not regulated by ghrelin. Rak et al.
howed that the anti-apoptotic effect of ghrelin was independent of
HSR-1� level [22]. Some studies also reported that the prolifera-

ive and anti-apoptotic actions of ghrelin in some cell types lacking
he ghrelin receptor were mediated by a distinct and yet uniden-
ified receptor [4,6]. However, we could not confirm whether the
europrotective effect of ghrelin was due to the classic GHSR-1� or
novel unknown receptor in neurons of the hippocampus. Perhaps,
nly additional exogenous ghrelin binding to GHSR-1� amplified
he protective effect. The gap between ghrelin and the PI3K-Akt-

itochondrial apoptosis pathway needs further exploration.
In conclusion, our results showed that the neuroprotective effect

f ghrelin was associated with promoting the PI3K/Akt signal-
ng pathway and inhibiting the mitochondrial apoptosis pathway.
hrelin could be a potential benefit treatment for the hippocampal
euron demise caused by pilocarpine-induced prolonged seizures.
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